The polymine spermine regulates osteogenic differentiation in adipose stem cells

نویسندگان

  • GS Tjabringa
  • B Zandieh-Doulabi
  • MN Helder
  • M Knippenberg
  • PIJM Wuisman
  • J Klein-Nulend
چکیده

For bone tissue engineering, it is important that mesenchymal stem cells (MSCs) differentiate into osteoblasts. To develop a method for differentiation of adipose tissue-derived mesenchymal stem cells (AT-MSCs) along the osteogenic lineage, we studied the effect of polyamines, which are organic cations implicated in bone growth and development, on differentiation of AT-MSCs. Treatment of goat-derived AT-MSCs with 1,25-dihydroxyvitamin-D3 (1,25(OH)(2)D(3)), which stimulates osteogenic differentiation, for 7 days induced gene expression of the polyamine-modulated transcription factor-1 (PMF-1) and spermidine/spermine N (1)-acetyltransferase (SSAT), which are both involved in polyamine metabolism, suggesting that polyamines are involved in osteogenic differentiation of AT-MSCs. Furthermore, treatment of AT-MSCs with the polyamine spermine-regulated gene expression of runx-2, a transcription factor involved in early stages of osteogenic differentiation, and that of osteopontin, a bone matrix protein expressed in later stages of osteogenic differentiation. Runx-2 gene expression was increased 4 and 14 days after a short 30 min. treatment with spermine, while osteopontin gene expression was only increased 4 days after spermine treatment. Finally, alkaline phosphatase activity, which is intimately involved in the formation of extracellular matrix of bone, was increased 4 weeks after the 30 min.-spermine treatment of AT-MSCs. In conclusion, this study shows for the first time that the polyamine spermine regulates differentiation of AT-MSCs along the osteogenic lineage, which can be used as a new method for differentiation of AT-MSCs along the osteogenic lineage. Therefore, polyamines may constitute a promising tool for bone tissue engineering approaches using AT-MSCs, such as a one-step surgical procedure for spinal interbody fusion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Osteogenic Differentiation of Rat Mesenchymal Stem Cells from Adipose Tissue in Comparison with Bone Marrow Mesenchymal Stem Cells: Melatonin As a Differentiation Factor

Background: Adipose-derived stem cells (ADSC) could be an appealing alternative to bone marrow stem cells (BMSC) for engineering cell-based osteoinductive grafts. Meanwhile, prior studies have demonstrated that melatonin can stimulate osteogenic differentiation. Therefore, we assayed and compared the melatonin effect on osteogenic differentiation of BMSC with that of ADSC. Methods: Mesenchymal...

متن کامل

Differentiation of Adipose-derived Stem Cells into Schwann Cell Phenotype in Comparison with Bone Marrow Stem Cells

Objective(s) Bone marrow is the traditional source of human multipotent mesenchymal stem cells (MSCs), but adipose tissue appears to be an alternative and more readily available source. In this study, rat adipose-derived stem cells (ADSCs) were induced to differentiate into Schwann-like cells and compared with rat bone marrow stem cells (BMSCs) for their Schwann-like cells differentiation pote...

متن کامل

Osteogenic Differentiation of Mesenchymal Stem Cells Via Osteoblast- Imprinted Substrate: In Vitro and In Vivo Evaluation in Rat Model

BACKGROUND: Stem cells have great effects in clinical cell-based therapy. Accordingly, controlling the behavior and directing the fate of stem cells cultured in the laboratory is an important issue. OBJECTIVES: The aim of this study was to evaluate osteogenic properties of adipose derived mesenchymal stem cells (ADSCs) which differentiated toward osteogenic linage by osteoblast-imprinted substr...

متن کامل

Review Paper: Embryonic Stem Cell and Osteogenic Differentiation

Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells, including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cell...

متن کامل

Comparison of the effects of extremely low-frequency Electromagnetic field and Betaine on in vitro osteogenic differentiation of human adipose tissue derived-mesenchymal stem cells

Background & Aim: Extremely low-frequency electromagnetic field (ELF-EMF) and betaine are safe factors in bone fracture repair. This study aimed to compare the effects of these two stimuli on osteogenic differentiation of human adipose stem cells (hADSCs). Methods: After obtaining written informed consent, cells were extracted from abdominal adipose tissue and then cultured in vitro until the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2008